Abstract
To achieve timely and accurate fault detection in reactive ion etching, neural networks (NNs) have been applied for the fusion of data generated by two in-situ sensors: optical emission spectroscopy (OES) and residual gas analysis (RGA). While etching is performed, OES and RGA data are simultaneously collected in real time. Several pre-determined, statistically significant wavelengths (for OES data) and atomic masses (for RGA signals) are monitored. These data are subsequently used for training NN-based time series models of process behavior. Such models, referred to herein as time series NNs (TSNNs), are realized using multilayered perceptron NNs. Results indicate that the TSNNs not only predict process parameters of interest, but also efficiently perform as sensor fusion of the in-situ sensor data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.