Abstract

To mitigate capital equipment investments and enhance product quality, semiconductor manufactures are turning to advanced process control (APC) methods. With the objective of facilitating APC, this paper investigates a methodology for real-time malfunction diagnosis of reactive ion etching (RIE) employing two types of in situ metrology: optical emission spectroscopy (OES) and residual gas analysis (RGA). Based on metrology data, time series neural networks (TSNNs) are trained to generate evidential belief for potential malfunctions in real time, and Dempster-Shafer (D-S) theory is adopted for evidential reasoning. Successful malfunction diagnosis is achieved, with only a single missed alarm and a single false alarm occurring out of 21 test runs when both sensors are used in tandem. From the results, we conclude that the OES and RGA sensors, in conjunction with the TSNN models, can be effectively used for RIE monitoring and diagnosis. Furthermore, D-S theory is shown to be an appropriate inference methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.