Abstract

The transformation of sensory input to motor output is often conceived as a decoder operating on neural representations. We seek a mechanistic understanding of sensory decoding by mimicking neural circuitry in the decoder’s design. The results of a simple experiment shape our approach. Changing the size of a target for smooth pursuit eye movements changes the relationship between the variance and mean of the evoked behavior in a way that contradicts the regime of “signal-dependent noise” and defies traditional decoding approaches. A theoretical analysis leads us to propose a circuit for pursuit that includes multiple parallel pathways and multiple sources of variation. Behavioral and neural responses with biomimetic statistics emerge from a biologically-motivated circuit model with noise in the pathway that is dedicated to flexibly adjusting the strength of visual-motor transmission. Our results demonstrate the power of re-imagining decoding as processing through the parallel pathways of neural systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call