Abstract

Neural stemness is suggested to be the ground state of tumorigenicity and pluripotent differentiation potential. However, the relationship between these cell properties is unclear. Here, by disrupting the neural regulatory network in neural stem and cancer cells and by serial transplantation of cancer cells, we show that tumorigenicity and pluripotent differentiation potential are coupled cell properties unified by neural stemness. We show that loss of neural stemness via inhibition of SETDB1, an oncoprotein with enriched expression in embryonic neural cells during vertebrate embryogenesis, led to neuronal differentiation with reduced tumorigenicity and pluripotent differentiation potential in neural stem and cancer cells, whereas enhancement of neural stemness by SETDB1 overexpression caused the opposite effects. SETDB1 maintains a regulatory network comprising proteins involved in developmental programs and basic cellular functional machineries, including epigenetic modifications (EZH2), ribosome biogenesis (RPS3), translation initiation (EIF4G), and spliceosome assembly (SF3B1); all of these proteins are enriched in embryonic neural cells and play active roles in cancers. In addition, SETDB1 represses the transcription of genes promoting differentiation and cell cycle and growth arrest. Serial transplantation of cancer cells showed that neural stemness, tumorigenicity, and pluripotent differentiation potential were simultaneously enhanced; these effects were accompanied by increased expression of proteins involved in developmental programs and basic machineries, including SETDB1 and the abovementioned proteins, as well as by increased alternative splicing events. These results indicate that basic machineries work together to define a highly proliferative state with pluripotent differentiation potential and also suggest that neural stemness unifies tumorigenicity and differentiation potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.