Abstract

Currently, exosomes (EXOs) are being explored as novel drug delivery carriers with greater advantages, including crossing the blood-brain-barrier and loading drugs. The present study utilized EXOs derived from neural stem cells (NSCs) for the delivery of molecular drugs to treat gliomas. miR-124-3p was selected according to previous studies by the authors, and the effects of the delivery of miR-124-3p to glioma cells by NSC-EXOs in vitro and in vivo were evaluated. It was found that NSC-EXOs successfully delivered miR-124-3p into glioma cells, and NSC-EXOs loaded with miR-124-3p significantly inhibited glioma cell proliferation, invasion and migration. Furthermore, the delivery of miR-124-3p by NSC-EXOs suppressed flotillin 2 (FLOT2) expression by specifically binding to the 3' untranslated region of the FLOT2 gene in gliomas; subsequently, AKT1 was found to be associated with the EXO-miR-124-3p/FLOT2 pathway. Moreover, the therapeutic effects of the delivery of miR-124-3p by NSC-EXOs were confirmed in a mouse tumor xenograft model of glioma. Thus, bio-carrier NSC-EXOs loaded with miR-124-3p suppressed glioma growth via the EXO-miR-124-3p/FLOT2/AKT1 pathway. On the whole, the present study provides insight into stem cell-free molecular-targeted therapy based on bio-carrier NSC-EXOs and provides a potential strategy for the treatment of glioma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.