Abstract
Cortical networks are complex systems of a great many interconnected neurons that operate from collective dynamical states. To understand how cortical neural networks function, it is important to identify their common dynamical operating states from the probabilistic viewpoint. Probabilistic characteristics of these operating states often underlie network functions. Here, using multi-electrode data from three separate experiments, we identify and characterize a cortical operating state (the "probability polling" or "p-polling" state), common across mouse and monkey with different behaviors. If the interaction among neurons is weak, the p-polling state provides a quantitative understanding of how the high dimensional probability distribution of firing patterns can be obtained by the low-order maximum entropy formulation, effectively utilizing a low dimensional stimulus-coding structure. These results show evidence for generality of the p-polling state and in certain situations its advantage of providing a mathematical validation for the low-order maximum entropy principle as a coding strategy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have