Abstract

This paper evaluates the feasibility of using artificial neural network (ANN) models for estimating the overconsolidation ratio (OCR) of clays from piezocone penetration tests (PCPT). Three feed-forward, back-propagation ANN models are developed, and trained using actual PCPT records from test sites around the world. The soil deposits range from soft, normally consolidated intact clays to very stiff, heavily overconsolidated fissured clays. ANN model 1 is a general model applicable for both intact and fissured clays. ANN model 2 is suited for intact clays, and ANN model 3 is applicable to fissured clays only. The models are validated using new PCPT data (not used for training), and by comparing model predictions with reference OCR values obtained from oedometer tests. For intact clays, ANN model 2 gives better OCR estimates compared to ANN model 1. For fissured clays, ANN model 3 gives better estimates compared to ANN model 1. Some of the existing interpretation methods are reviewed. Compared to the exist...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.