Abstract

This study concentrates on the fixed-time tracking consensus and containment control of second-order heterogeneous nonlinear multiagent systems (MASs) with and without measurable velocity under directed topology. By defining a time-varying scaling function and approximating the unknown nonlinear dynamics with radial basis function neural networks (RBFNNs), a novel distributed protocol for solving the fixed-time tracking consensus and containment control problems of second-order heterogeneous nonlinear MASs with full states available is proposed based on a nonsingular sliding-mode control method constructed by designing a prescribed-time convergent sliding surface. For the scenario of immeasurable velocity, a fixed-time convergent states' observer is designed to reveal the velocity information when the unknown linearity is bounded. Subsequently, a distributed fixed-time consensus protocol based on observed velocity information is proposed for the extended results. Ultimately, the acquired results are verified by three simulation examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.