Abstract
The goal of the paper is to create a training model based on real raw noisy data and train a neural network to determine the behavior of the fuel level, namely, to determine the time and volume of vehicle refueling, fuel consumption / excessive consumption / drainage.Various algorithms and data processing methods are used in fuel control and metering systems to get rid of noise. In some systems, primary filtering is used by excluding readings that are out of range, sharp jumps and deviations, and averaging over a sliding window. Research is being carried out on the use of more complex filters than simple averaging – by example, the Kalman filter for data processing.When measuring the fuel level using various fuel level sensor the data is influenced by many external factors that can interfere with the measurement and distort the real fuel level. Since these interferences are random and have a different structure, it is very difficult to completely remove them using classical noise suppression algorithms. Therefore, we use artificial intelligence, namely a neural network, to find patterns, detect noise and correct distorted data. To correct distorted data, you first need to determine which data is distorted, classify the data.In the course of the work, the raw data on the fuel level were transformed for use in the neural network training model. To describe the behavior of the fuel level, we use 4 possible classes: fuel consumption is observed, the vehicle is refueled, the fuel level does not change (the vehicle is idle), the data is distorted by noise. Also, in the process of work, additional tools of the DeepLearning4 library were used to load data training and training a neural network. A multilayer neural network model is used, namely a three-layer neural network, as well as used various training parameters provided by the DeepLearning4j library, which were obtained because of experiments.After training the neural network was used on test data, because of which the Confusion Matrix and Evaluation Metrics were obtained.In conclusion, finding a good model takes a lot of ideas and a lot of experimentation, also need to correctly process and transform the raw data to get the correct data for training. So far, a neural network has been trained to determine the state of the fuel level at a point in time and classify the behavior into four main labels (classes). Although we have not reduced the error in determining the behavior of the fuel level to zero, we have saved the states of the neural network, and in the future we will be able to retrain and evolve our neural network to obtain better results.
Highlights
В тоже время при работе технологического, крупногабаритного и грузового транспорта уровень топлива в баках может сильно колебаться, что накладывает значительный шум на измеренные данные, поэтому для более качественного контроля расхода топлива следует очистить показания датчика уровня топлива (ДУТ) от шума, обусловленного работой самого транспортного средства (ТС)
Хотя пока ошибка определения поведения уровня топлива не сведена к нулю, мы сохранили состояния нейронной сети и в будущем сможем переобучить и развить нашу нейронную сеть для получения лучших результатов
Summary
«Системні технології» 4 (135) 2021 «System technologies» альных зашумленных данных и обучение нейронной сети для определения поведения уровня топлива, а именно для определения времени и объема заправки ТС, расхода/перерасхода/слива топлива. Поэтому мы будем использовать искусственный интеллект, а именно нейронную сеть, для поиска закономерностей, определения шума и исправления искаженных данных. Deeplearning4J или DL4J — это библиотека Java/Scala для глубокого обучения [4]. При работе с нейронными сетями большая часть данных, обычно около 80%, используется для обучения и поэтому называется обучающей выборкой.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have