Abstract

In this work, a study was carried out by modifying the conventional Tungsten Carbide Cobalt Chrome (WC–10Co4Cr) powder with a small addition of yttrium-oxide (Y2O3). Reinforcement was done by adding yttria (Y2O3) ceramics in WC–10Co4Cr powder by using a jar ball mill process. The surface microstructure, chemical composition, and phase compositions of coating powder and coatings were examined by using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffractometry. Silt erosion was evaluated through a pot tester by preparing equi- and multi-sized slurries at different velocities, impact angles, concentrations, and rates. Results show that the WC–10Co4Cr powder coating reinforced by Y2O3 ceramics possesses low porosity, providing higher erosive performance as compared to conventional WC–10Co4Cr coating. The present study reveals that the deposition of conventional WC–10Co4Cr coating helps improve the wear resistance of AISI 316L stainless steel (UNS S31600) by 9.98% for the variation in rotational speed. However, the erosive wear performance of conventional WC–10Co4Cr coating was improved by 45.9% by blending it with the Y2O3 ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.