Abstract
This paper introduces a new approach to reconstruct cosmological functions using artificial neural networks based on observational measurements with minimal theoretical and statistical assumptions. By using neural networks, we can generate computational models of observational datasets, and then we compare them with the original ones to verify the consistency of our method. This methodology is applicable to even small-size datasets. In particular, we test the proposed method with data coming from cosmic chronometers, fsigma _8 measurements, and the distance modulus of the Type Ia supernovae. Furthermore, we introduce a first approach to generate synthetic covariance matrices through a variational autoencoder, using the systematic covariance matrix of the Type Ia supernova compilation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.