Abstract

Neural network modeling for small datasets can be justified from a theoretical point of view according to some of Bartlett's results showing that the generalization performance of a multilayer perceptron (MLP) depends more on the L1 norm ‖c‖1 of the weights between the hidden layer and the output layer rather than on the total number of weights. In this article we investigate some geometrical properties of MLPs and drawing on linear projection theory, we propose an equivalent number of degrees of freedom to be used in neural model selection criteria like the Akaike information criterion and the Bayes information criterion and in the unbiased estimation of the error variance. This measure proves to be much smaller than the total number of parameters of the network usually adopted, and it does not depend on the number of input variables. Moreover, this concept is compatible with Bartlett's results and with similar ideas long associated with projection-based models and kernel models. Some numerical studies involving both real and simulated datasets are presented and discussed.

Highlights

  • Further reproduction prohibited without permission

Read more

Summary

Introduction

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.