Abstract
_This paper presents an effective adaptive neural network feedback controller for force control of robot manipulators in an unknown environment by applying damping neurons which possess elastic-viscous properties. The unexpected overshooting and oscillation caused by the unknown and/or unmodeled dynamics of a robot manipulator and an environment can be decreased efficiently by the effect of the proposed damping neurons. Furthermore, a fuzzy controlled evaluation function is applied for the learning of the proposed neural network controller, so that the controller is able to adapt to the unknown environment more effectively. The effectiveness of the proposed neural network controller is evaluated by experiment with a 3 d.o.f. direct-drive planar robot manipulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.