Abstract
We investigate subjects’ brain hemodynamic activities during mental tasks using a nearinfrared spectroscopy. A wavelet and neural network-based methodology is presented for recognition of brain hemodynamic responses. The recognition is performed by a single layer neural network classifier according to a backpropagation algorithm with two error minimizing techniques. The performance of the classifier varied depending on the neural network model, but the performance was usually at least 90%. The classifier usually converged faster and attained a somewhat greater level of performance when an input was presented with only relevant features. The overall classification rate was higher than 94%. The study demonstrates the accurate classifiablity of human brain hemodynamic useful in various brain studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.