Abstract
The coal component content is an important parameter during the coal resources exploration and exploitation. Previous logging curve regression and single neural network methods have the disadvantages of low accuracy and weak generalization ability in calculating coal component content. In this study, a gray relational analysis-hybrid neural network (GRA-HNN) method is developed by combining GRA and HNN to predict coal component content in logging data. First, the correlation degree between different conventional logging data and coal components is calculated using the GRA method, and logging curves with a correlation degree of ≥0.7 are selected as the input training data set. Then, a back propagation neural network, support vector machine neural network, and radial basis function neural network of different coal components are constructed based on the selected optimal input logging data, and the weighted average strategy is used to form an HNN prediction model. Finally, the GRA-HNN method is used to predict the coal component content of coalbed methane production wells in the Panji mining area. The application results indicate that the coal component content predicted by the GRA-HNN method has the highest accuracy compared with the logging curve regression method and its single neural network model, with a maximum average relative error of 13.4%. In addition, the accuracy of coal component content predicted by some single intelligent models is not always higher than the logging curve regression method, indicating that the neural network model is not necessarily suitable for all coal component content predictions. Our GRA-HNN method not only optimizes the prediction performance of a single neural network model by selecting effective input parameters but also comprehensively considers the prediction effect of several neural network models, which strengthens the generalization ability of neural network model and increases the log interpretation accuracy of coal component content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.