Abstract

A multiobjective optimization (MOO) technique for a dual-band circularly polarized antenna by using neural networks (NNs) is introduced in this paper. In particular, the optimum antenna dimensions are computed by modeling the problem as a multilayer feed-forward neural network (FFNN), which is two-stage trained with I/O pairs. The FFNN is chosen because of its characteristic of accurate approximation and good generalization. The data for FFNN training is obtained by using HFSS EM simulator by varying different geometrical parameters of the antenna. A two strip-loaded circular aperture antenna is utilized to demonstrate the optimization technique. The target dual bands are 835–865 MHz and 2.3–2.35 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.