Abstract

The process modeling of ZnO thin films grown by pulsed laser deposition (PLD) was investigated using neural networks based on radial basis function networks (RBFN) and multi-layer perceptron (MLP). Two input factors were examined with respect to the response factor, photoluminescence (PL), which is one of the main factors to determine the optical characteristic of the structure. In order to minimize the joint confidence region of fabrication process with varying the conditions, D-optimal experimental design technique was performed and PL intensity was characterized by neural networks. The statistical results were then used to verify the fitness of the nonlinear process model. Based on the results, this modeling methodology can optimize the process conditions for semiconductor manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.