Abstract

Success of a search engine is measured by the satisfaction of its users. Finding user expectation can be a better step for improved user satisfaction. In this paper we have proposed a neural network based approach for predicting user satisfaction with search engine. Our work is divided in two parts. Part I investigates user expectations towards search engine for their information need. In Part II we proposed an Artificial Neural Network (ANN) model for predicting User Satisfaction. In our work we have analyzed the major factors affecting user satisfaction with search engine and find out the importance /priority value of these factors based on a survey conducted on 100 search engine users of different profiles with 5-10 years of experience using search engines for their information needs like study material, entertainment, research, day to day problem solution etc. In the present work we have identified four major factors namely up-to-date information, search result relevancy, response time and reliability, contributing to the user satisfaction and developed an ANN model which predicts satisfaction results with a reasonable degree of accuracy. General Terms Search Engine, User Satisfaction, Artificial Neural Network

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.