Abstract

In this article we present the multivariate approximation of time splitting random functions defined on a box or RN,N∈N, by neural network operators of quasi-interpolation type. We achieve these approximations by obtaining quantitative-type Jackson inequalities engaging the multivariate modulus of continuity of a related random function or its partial high-order derivatives. We use density functions to define our operators. These derive from the logistic and hyperbolic tangent sigmoid activation functions. Our convergences are both point-wise and uniform. The engaged feed-forward neural networks possess one hidden layer. We finish the article with a great variety of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.