Abstract
Research on nicotine's neurobiological effects has rarely focused on aerosols, despite their primary role in tobacco product consumption. Here, we utilized in vivo electrophysiology to examine brain activity in mice exposed to nicotine aerosols, both alone and with flavor additives (citric acid and menthol). Local field potential (LFP) recordings from the nucleus accumbens (NAc), basolateral amygdala (BLA), ventral tegmental area (VTA), and ventral posteromedial nucleus (VPM) were analyzed under saline, nicotine, nicotine with citric acid(CA + NIC), and nicotine with menthol(MENT + NIC) conditions. Nicotine exposure significantly reduced power spectral density (PSD) in the NAc-Alpha, NAc-Beta, and BLA-Beta bands, unaffected by flavor additives. Coherence between key brain regions (e.g., VPM-VTA in Beta, VPM-BLA in Alpha) also decreased with nicotine but was restored with citric acid or menthol, suggesting their role in mitigating nicotine's disruptive effects on neural synchronization. Our findings show that LFPs can effectively capture nicotine's neural effects and highlight the modulatory role of flavor additives, offering new insights into nicotine exposure management and tobacco product design.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have