Abstract

Artificial neural networks (ANN) are commonly used to solve many industrial problems. However, their application for cavitation erosion evaluation is a quite new attempt. Thus, the aim of this work was to elaborate the neural model of the cavitation erosion process of 34CrNiMo6 steel. Cavitation erosion tests were conducted with a usage of the ultrasonic vibratory method with stationary specimen that relies on the ASMT G32 standard. The proceeding damage of marked steel surface area was observed by means of a scanning electron microscope. Wear was evaluated with profiler measurements, image analysis of cavitation worn surface areas and weighing done in stated time intervals. The cavitation erosion results were analysed with Matlab software by Neural Network Toolbox. The developed neural model of cavitation erosion process that combines exposure time, roughness, area fraction of worn surfaces, and mass loss gives promising results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.