Abstract

The shape from shading problem refers to the well-known fact that most real images usually contain specular components and are affected by unknown reflectivity. In this paper, these limitations are addressed and a new neural-based 3D shape reconstruction model is proposed. The idea behind this approach is to optimize a proper reflectance model by learning the parameters of the proposed neural reflectance model. In order to do this, new neural-based reflectance models are presented. The feedforward neural network (FNN) model is able to generalize the diffuse term, while the RBF model is able to generalize the specular term. A hybrid structure of FNN-based and RBF-based models is also presented because most real surfaces are usually neither Lambertian models nor ideally specular models. Experimental results, including synthetic and real images, are presented to demonstrate the performance of our approach given different specular effects, unknown illuminate conditions, and different noise environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.