Abstract
In this letter, the limitation of the conventional Lambertian reflectance model is addressed and a new neural-based reflectance model is proposed of which the physical parameters of the reflectivity under different lighting conditions are interpreted by the neural network behavior of the nonlinear input-output mapping. The idea of this method is to optimize a proper reflectance model by a neural learning algorithm and to recover the object surface by a simple shape-from-shading (SFS) variational method with this neural-based model. A unified computational scheme is proposed to yield the best SFS solution. This SFS technique has become more robust for most objects, even when the lighting conditions are uncertain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.