Abstract

Abstract. Simulating land use and land cover changes (LUCC) is important for urban planning and environmental studies. In this study, we introduce a neural cellular automata (NCA) model that integrates biological principles and convolutional neural networks (CNNs) for land use simulation. We conduct experiments in the city of Wuhan, China. The NCA model achieved the highest performance with an OA of 0.858, F1 score of 0.753, Kappa coefficient of 0.799, and FOM of 0.427. Comparisons of land use data of Wuhan city from 2000 and 2010 with the simulated optimal results indicate that forest areas closer to urban centers are more susceptible to modernization processes, showing the advantage of NCA in accurately simulating land use changes in the central urban area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.