Abstract
Visual shape recognition--the ability to recognize a wide variety of shapes regardless of their size, position, view, clutter and ambient lighting--is a remarkable ability essential for complex behavior. In the primate brain, this depends on information processing in a multistage pathway running from primary visual cortex (V1), where cells encode local orientation and spatial frequency information, to the inferotemporal cortex (IT), where cells respond selectively to complex shapes. A fundamental question yet to be answered is how the local orientation signals (in V1) are transformed into selectivity for complex shapes (in IT). To gain insights into the underlying mechanisms we investigated the neural basis of shape representation in area V4, an intermediate stage in this processing hierarchy. Theoretical considerations and psychophysical evidence suggest that contour features, i.e. angles and curves along an object contour, may serve as the basis of representation at intermediate stages of shape processing. To test this hypothesis we studied the response properties of single units in area V4 of primates. We first demonstrated that V4 neurons show strong systematic tuning for the orientation and acuteness of angles and curves when presented in isolation within the cells' receptive field. Next, we found that responses to complex shapes were dictated by the curvature at a specific boundary location within the shape. Finally, using basis function decoding, we demonstrated that an ensemble of V4 neurons could successfully encode complete shapes as aggregates of boundary fragments. These findings identify curvature as a basis of shape representation in area V4 and provide insights into the neurophysiological basis for the salience of convex curves in shape perception.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have