Abstract

This paper addresses the adaptive finite-time decentralized control problem for time-varying output-constrained nonlinear large-scale systems preceded by input saturation. The intermediate control functions designed are approximated by neural networks. Time-varying barrier Lyapunov functions are used to ensure that the system output constraints are never breached. An adaptive finite-time decentralized control scheme is devised by combining the backstepping approach with Lyapunov function theory. Under the action of the proposed approach, the system stability and desired control performance can be obtained in finite time. The feasibility of this control strategy is demonstrated by using simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.