Abstract

Cognitive demand is thought to modulate two often used, but rarely combined, measures: pupil size and neural α (8-12 Hz) oscillatory power. However, it is unclear whether these two measures capture cognitive demand in a similar way under complex audiovisual-task conditions. Here we recorded pupil size and neural α power (using electroencephalography), while human participants of both sexes concurrently performed a visual multiple object-tracking task and an auditory gap detection task. Difficulties of the two tasks were manipulated independent of each other. Participants' performance decreased in accuracy and speed with increasing cognitive demand. Pupil size increased with increasing difficulty for both the auditory and the visual task. In contrast, α power showed diverging neural dynamics: parietal α power decreased with increasing difficulty in the visual task, but not with increasing difficulty in the auditory task. Furthermore, independent of task difficulty, within-participant trial-by-trial fluctuations in pupil size were negatively correlated with α power. Difficulty-induced changes in pupil size and α power, however, did not correlate, which is consistent with their different cognitive-demand sensitivities. Overall, the current study demonstrates that the dynamics of the neurophysiological indices of cognitive demand and associated effort are multifaceted and potentially modality-dependent under complex audiovisual-task conditions.SIGNIFICANCE STATEMENT Pupil size and oscillatory α power are associated with cognitive demand and effort, but their relative sensitivity under complex audiovisual-task conditions is unclear, as is the extent to which they share underlying mechanisms. Using an audiovisual dual-task paradigm, we show that pupil size increases with increasing cognitive demands for both audition and vision. In contrast, changes in oscillatory α power depend on the respective task demands: parietal α power decreases with visual demand but not with auditory task demand. Hence, pupil size and α power show different sensitivity to cognitive demands, perhaps suggesting partly different underlying neural mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call