Abstract
The computational power of formal models for networks of spiking neurons is compared with that of other neural network models based on McCulloch Pitts neurons (i.e., threshold gates), respectively, sigmoidal gates. In particular it is shown that networks of spiking neurons are, with regard to the number of neurons that are needed, computationally more powerful than these other neural network models. A concrete biologically relevant function is exhibited which can be computed by a single spiking neuron (for biologically reasonable values of its parameters), but which requires hundreds of hidden units on a sigmoidal neural net. On the other hand, it is known that any function that can be computed by a small sigmoidal neural net can also be computed by a small network of spiking neurons. This article does not assume prior knowledge about spiking neurons, and it contains an extensive list of references to the currently available literature on computations in networks of spiking neurons and relevant results from neurobiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.