Abstract
Networks-based approaches are often used to analyze gene expression data or protein-protein interactions but are not usually applied to study the relationships between different biomarkers. Given the clinical need for more comprehensive and integrative biomarkers that can help to identify personalized therapies, the integration of biomarkers of different natures is an emerging trend in the literature. Network analysis can be used to analyze the relationships between different features of a disease; nodes can be disease-related phenotypes, gene expression, mutational events, protein quantification, imaging-derived features and more. Since different biomarkers can exert causal effects between them, describing such interrelationships can be used to better understand the underlying mechanisms of complex diseases. Networks as biomarkers are not yet commonly used, despite being proven to lead to interesting results. Here, we discuss in which ways they have been used to provide novel insights into disease susceptibility, disease development and severity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have