Abstract

This study proposes a new distributed networked control (DNC) scheme and its stability analysis framework for automatic generation control in networked interconnected power systems with participation of wind turbine. It is assumed that the remote control signals are measured at locations away from the control site and exchanged among a non-ideal communication network with both time-varying delays and random packet dropouts. First, a model is proposed for large-scale DNC system consisting of subsystems, in which the states of each subsystem have their own time-varying delay and there are also delay and packet dropouts in their interconnection links. Then, a linear matrix inequality (LMI)-based method is proposed to design the distributed controller for better system performance. For this, a new Lyapunov–Krasovskii function is developed to conclude some LMI-based delay-independent theorem for designing control law. To evaluate the proposed method, a multi-area power system with participation of wind turbine is considered. Simulation results show the capability of the proposed approach to enhance the performance of networked power system in the presence of load perturbation among a non-ideal communication network with both time-varying delays and random packet dropouts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.