Abstract

In this paper, we establish a few new synchronization conditions for complex networks with nonlinear and nonidentical self-dynamics with switching directed communication graphs. In light of the recent works on distributed subgradient methods, we impose integral convexity for the nonlinear node self-dynamics in the sense that the self-dynamics of a given node is the gradient of some concave function corresponding to that node. The node couplings are assumed to be linear but with switching directed communication graphs. Several sufficient and/or necessary conditions are established for exact or approximate synchronization over the considered complex networks. These results show when and how nonlinear node self-dynamics may cooperate with the linear diffusive coupling, which eventually leads to network synchronization conditions under relaxed connectivity requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.