Abstract
We describe results from Dasaratha and He [DH21a] and Dasaratha and He [DH20] about how network structure influences social learning outcomes. These papers share a tractable sequential model that lets us compare learning dynamics across networks. With Bayesian agents, incomplete networks can generate informational confounding that makes learning arbitrarily inefficient. With naive agents, related forces can lead to mislearning.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have