Abstract
Hydrophobic association hydrogels (HA-gels) were successfully prepared through micellar copolymerization of acrylamide (AM) and a small amount of octylphenol polyoxyethylene acrylate (OP-4-AC) in an aqueous solution containing sodium dodecyl sulfate (SDS). HA-gels exhibited excellent mechanical properties and transparency. Especially, HA-gels possessed the capability of re-forming, such as self-healing and molding. From Fourier transform infrared, swelling behavior and re-forming capability of HA-gels, the network structure was established. On the basis of the micellar copolymerization theory, the statistical molecular theory of rubber elastic, and using uniaxial stretching data, the length of the hydrophobic microblocks, the effective network chain density and the molecular weight of the chain length between cross-linking points were evaluated for all HA-gels; furthermore, they were also evaluated for the region of medium deformation by the Mooney-Rivlin theory. For HA-gels, we investigated in detail the effects of the content of compositions in the initial solution, OP-4-AC, SDS and AM, on their tensile mechanical properties on the basis of the proposed network structure. The results clearly indicate their tensile strength, fracture energy, elastic modulus, and elongation strongly depended on their composition content.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have