Abstract
Within the upcoming fifth generation (5G) mobile networks, a lot of emerging technologies, such as Software Defined Network (SDN), Network Function Virtualization (NFV) and network slicing are proposed in order to leverage more flexibility, agility and cost-efficient deployment. These new networking paradigms are shaping not only the network architectures but will also affect the market structure and business case of the stakeholders involved. Due to its capability of splitting the physical network infrastructure into several isolated logical sub-networks, network slicing opens the network resources to vertical segments aiming at providing customized and more efficient end-to-end (E2E) services. While many standardization efforts within the 3GPP body have been made regarding the system architectural and functional features for the implementation of network slicing in 5G networks, techno-economic analysis of this concept is still at a very incipient stage. This paper initiates this techno-economic work by proposing a model that allocates the network cost to the different deployed slices, which can then later be used to price the different E2E services. This allocation is made from a network infrastructure provider perspective. To feed the proposed model with the required inputs, a resource allocation algorithm together with a 5G network function (NF) dimensioning model are also proposed. Results of the different models as well as the cost saving on the core network part resulting from the use of NFV are discussed as well.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have