Abstract

The rise of grid modernization has been prompted by the escalating demand for power, the deteriorating state of infrastructure, and the growing concern regarding the reliability of electric utilities. The smart grid encompasses recent advancements in electronics, technology, telecommunications, and computer capabilities. Smart grid telecommunication frameworks provide bidirectional communication to facilitate grid operations. Software-defined networking (SDN) is a proposed approach for monitoring and regulating telecommunication networks, which allows for enhanced visibility, control, and security in smart grid systems. Nevertheless, the integration of telecommunications infrastructure exposes smart grid networks to potential cyberattacks. Unauthorized individuals may exploit unauthorized access to intercept communications, introduce fabricated data into system measurements, overwhelm communication channels with false data packets, or attack centralized controllers to disable network control. An ongoing, thorough examination of cyber attacks and protection strategies for smart grid networks is essential due to the ever-changing nature of these threats. Previous surveys on smart grid security lack modern methodologies and, to the best of our knowledge, most, if not all, focus on only one sort of attack or protection. This survey examines the most recent security techniques, simultaneous multi-pronged cyber attacks, and defense utilities in order to address the challenges of future SDN smart grid research. The objective is to identify future research requirements, describe the existing security challenges, and highlight emerging threats and their potential impact on the deployment of software-defined smart grid (SD-SG).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.