Abstract

In principle, network models can replicate exactly the microstructure of porous media. In practice, however, network models have been constructed using various assumptions concerning pore structure. This paper presents a network model of a real, disordered porous medium that invokes no assumptions regarding pore structure. The calculated permeability of the model agrees well with measured permeabilities, providing a new and more rigorous confirmation of the validity of the network approach. Several assumptions commonly used in constructing network models are found to be invalid for a random packing of equal spheres. In addition, the model permits quantification of the effect of pore-scale correlation (departure from randomness) upon permeability. The effect is comparable to reported discrepancies between measured permeabilities and predictions of other network models. The implications of this finding are twofold. First, a key assumption of several theories of transport in porous media, namely that pore dimensions are randomly distributed upon a network, may be invalid for real porous systems. Second, efforts both to model and to measure pore-scale correlations could yield more accurate predictions of permeability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.