Abstract

Networks provide an understandable and, in the case of small size, visualizable representation of data, which allows us to obtain essential information about the relationships between pairs of nodes, e.g., their distances. In visualization, networks have an alternative two-dimensional vector representation to which various machine-learning methods can be applied. More generally, networks can be transformed into a low-dimensional space using so-called embedding methods, which bridge the gap between network analysis and traditional machine learning by creating numerical representations that capture the essence of the network structure. In this article, we present a new embedding method that uses non-symmetric dependency to find the distance between nodes and applies an iterative procedure to find a satisfactory distribution of nodes in space. For dimension 2 and the visualization of the result, we demonstrate the method’s effectiveness on small networks. For higher dimensions and several larger networks, we present the results of two experiments comparing our results with two well-established methods in the research community, namely node2vec and DeepWalk. The first experiment focuses on a qualitative comparison of the methods, while the second focuses on applying and comparing the classification results to embeddings in a higher dimension. Although the presented method does not outperform the two chosen methods, its results are still comparable. Therefore, we also explain the limitations of our method and a possible way to overcome them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.