Abstract

To provide high-quality video streaming services in a mobile communication network, a large bandwidth and reliable channel conditions are required. However, mobile communication services still encounter limited bandwidth and varying channel conditions. The streaming video system compresses video with motion estimation and compensation using multiple reference frames. The multiple reference frame structure can reduce the compressed bit rate of video; however, it can also cause significant error propagation when the video in the channel is damaged. Even though the streaming video system includes error-resilience tools to mitigate quality degradation, error propagation is inevitable because all errors can not be refreshed under the multiple reference frame structure. In this paper, a new network-aware error-resilient streaming video system is introduced. The proposed system can mitigate error propagation by controlling the number of reference frames based on channel status. The performance enhancement is demonstrated by comparing the proposed method to the conventional streaming system using static number of reference frames.

Highlights

  • Today, high-quality video content is a basic requirement of multimedia services and is becoming important in mobile communication systems

  • The observation results indicate that the proposed streaming method is effective at achieving more reliable transmission of streaming video because it strikes a balance between coding efficiency and error-resilience features

  • Video coding standards typically include both error-resilience tools to cope with the error propagation and multiple reference frame structures to achieve higher coding efficiency

Read more

Summary

Introduction

High-quality video content is a basic requirement of multimedia services and is becoming important in mobile communication systems. Because of the low cost of powerful processors and the advancement of mobile communication services, consumers are able to use high-definition multimedia streaming services on their hand-held devices. These multimedia streaming data have been compressed for storage and transmission. The current streaming video system generally uses motion estimation and compensation procedure at encoder and decoder, respectively, for a high coding efficiency feature. This system considerably reduces the number of bits to encode because it utilizes multiple reference frames to remove temporal redundancy. Because of its high coding efficiency, H.264/AVC and H.265/HEVC are suitable for the streaming system transmitting high-quality video sequences in the environments that have limited channel capacity [1]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call