Abstract

Recent advances in protecting node privacy on graph data and attacking graph neural networks (GNNs) gain much attention. The eye does not bring these two essential tasks together yet. Imagine an adversary can utilize the powerful GNNs to infer users' private labels in a social network. How can we adversarially defend against such privacy attacks while maintaining the utility of perturbed graphs? In this work, we propose a novel research task, adversarial defenses against GNN-based privacy attacks, and present a graph perturbation-based approach, NetFense, to achieve the goal. NetFense can simultaneously keep graph data unnoticeability (i.e., having limited changes on the graph structure), maintain the prediction confidence of targeted label classification (i.e., preserving data utility), and reduce the prediction confidence of private label classification (i.e., protecting the privacy of nodes). Experiments conducted on single- and multiple-target perturbations using three real graph data exhibit that the perturbed graphs by NetFense can effectively maintain data utility (i.e., model unnoticeability) on targeted label classification and significantly decrease the prediction confidence of private label classification (i.e., privacy protection). Extensive studies also bring several insights, such as the flexibility of NetFense, preserving local neighborhoods in data unnoticeability, and better privacy protection for high-degree nodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.