Abstract

The livestock industry is one of the main contributors to greenhouse gas emissions and there is an increasing demand for the industry to reduce its carbon footprint. Several studies have shown that feed additives 3-nitroxypropanol and nitrate to be effective in reducing enteric methane emissions. The objective of this study was to estimate the net mitigating effect of using 3-nitroxypropanol and nitrate on total greenhouse gas emissions in California dairy industry. A life cycle assessment approach was used to conduct a cradle-to-farm gate environmental impact analysis based on dairy production system in California. Emissions associated with crop production, feed additive production, enteric methane, farm management, and manure storage were calculated and expressed as kg CO2 equivalents (CO2e) per kg of energy corrected milk. The total greenhouse gas emissions from baseline, 3-nitroxypropanol and nitrate offered during lactation were 1.12, 0.993, and 1.08 kg CO2e/kg energy corrected milk, respectively. The average net reduction rates for 3-nitroxypropanol and nitrate were 11.7% and 3.95%, respectively. In both cases, using the feed additives on the whole herd slightly improved overall carbon footprint reduction compared to limiting its use during lactation phase. Although both 3-nitroxypropanol and nitrate had effects on decreasing the total greenhouse gas emission, the former was much more effective with no known safety issues in reducing the carbon footprint of dairy production in California.

Highlights

  • The main greenhouse gases (GHG) emissions from agricultural food production include nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4)

  • Livestock sector contributes to approximately 14.5% of global anthropogenic GHG emissions with 80% attributed to CH4 production from enteric fermentation and manure management from ruminants [1]

  • Feeding 3NOP to dairy cows resulted in a net reduction of total GHG emission of 11.6% in 3NOP scenario 1 and 11.8% in 3NOP scenario 2 compared to the baseline

Read more

Summary

Introduction

The main greenhouse gases (GHG) emissions from agricultural food production include nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). Livestock sector contributes to approximately 14.5% of global anthropogenic GHG emissions with 80% attributed to CH4 production from enteric fermentation and manure management from ruminants [1]. Dairy production is the third largest agricultural industry in the United States with total milk production increasing 13% over the past decade reaching over 215 billion pounds in 2019 [2]. California, as the top dairy production state accounted for over 20% of the total milk production with 1.73 million cows [2,3].

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.