Abstract

Using comparative analysis of the rates of key processes, we have documented the net effect of a shift in plant species composition on nitrogen cycles with the example of the rapid expansion of Phragmites australis (common reed) and its replacement of short grasses (e.g., Spartina patens) in coastal marshes of the eastern United States. In this study, we measured nitrogen (N) uptake by marsh plants, N adsorption from the water column by litter, changes in N content of litter, sediment N mineralization, nitrification, and nitrate consumption in adjacent plots dominated either by P. australis or by historically dominant S. patens. Rates of individual processes were generally greater in P. australis than in S. patens, but the magnitude of difference varied greatly among processes. Seasonal measurements of standing stock nitrogen in plant tissue indicate that P. australis took up ∼60% more N than did S. patens, and annual rates of N immobilization were nearly 300% greater in P. australis litter than in S. pat...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.