Abstract

Two approaches for estimating the amount of nitrogen (N) in plant tissues derived from labeled fertilizer were evaluated for two tissue types (root and shoot) in three different genera. In the first, atom percentage values obtained by mass spectrometry were converted to the portion of N derived from the fertilizer (NDFF). In the second, the slope of the regression line for the relationship between total N and labeled fertilizer N was used to represent the incremental increase in fertilizer N for each unit increase in total N. These two approaches were applied to data collected during container experiments. Unless a plot of total N versus labeled fertilizer N passes through the origin, conventional ratio-based estimates of the amount of NDFF for plants or tissues are often misleading. When nonzero intercepts occur, NDFF is dependent on the size (total N content) of the tissue or plant. Nonzero intercepts were frequently encountered. An analysis of regression lines describing the relationship between total N gain and fertilizer N produces a different interpretation than evaluations of the NDFF for treatment means. When an analysis of covariance was used to account for differences in total N between tissues and genera, results were generally consistent with the graphical observations and regression analysis. If only ratio-based approaches are used, it is difficult to determine if there are real physiological differences among treatments, genera, and tissues or if differences in NDFF are size-related. Because the data easily can be analyzed several ways, simultaneously evaluating data with ratio-based NDFF, covariates, and regression is appropriate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call