Abstract

We propose a net-based hierarchical macrocell such that placement dictates the cell placement. The proposed approach has four phases. 1) Net clustering and net-level floorplanning phase: a weighted net dependency graph is built from the input register-transfer-level netlist. Clusters of nets are then formed by clique partitioning and a net-cluster level floorplan is obtained by simulated annealing. The floorplan defines the regions where the nets in each cluster must be routed. 2) Force-directed net phase: a force-directed net is performed which yields a coarse net-level without consideration for the cell placement. 3) Iterative net terminal and cell phase: a force-directed net and cell is performed iteratively. The terminals of a net are free to move under the influence of forces in the quest for optimal wire length. The cells with high net length cost may jump out of local minima by ignoring the rejection forces. The overlaps are reduced by employing electrostatic rejection forces. 4) Overlap removal and input/output (I/O) pin assignment phase: Overlap removal is performed by a grid-based heuristic. I/O pin assignment is performed by minimum-weight bipartite matching. Placements generated by the proposed approach are compared with those generated by Cadence Silicon Ensemble and the O-tree floorplanning algorithm. On average, the proposed approach improves both the total wire length and longest wire length by 18.9% and 28.3%, respectively, with an average penalty of 5.6% area overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.