Abstract

Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general compromise between two features: specificity (the number of interactions the elements of the system can have) and affinity (how these elements can be connected to each other). Our findings suggesting occurrence of nestedness throughout biological scales can stimulate the debate on how pervasive nestedness may be in nature, while the theoretical emergent principles can aid further research on commonalities of biological networks.

Highlights

  • We characterized the nested pattern in one-mode networks with a modified version of a widely used nestedness metric based on overlap and decreasing fill designed for two-mode networks [5,19]

  • We found nested architectures in one-mode networks depicting a wide range of biological systems

  • We showed nestedness in a diverse collection of networks characterizing natural systems at multiple biological scales, and discussed the implications of the nested structure for each case

Read more

Summary

Introduction

Other structural patterns may be characteristic of at least particular types of networks This seems to be the case of nestedness, which occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements [5,6]. In mutualistic (as well as in parasitic and trophic) networks, nestedness revealed that the interactions of specialist species (the less connected) tend to be proper subsets of the interactions of generalist ones (the highly connected) [7,9,10,11,12,13] These findings gave rise to hypotheses on the assembly mechanisms organizing ecological communities

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call