Abstract

Living organisms create, copy, and make use of information, the content depending on the level of organization. In cells, a network of signal chain proteins regulates gene expression and other cell functions. Incoming information is encoded through signal reception, processed by the network, and decoded by the synthesis of new gene products and other biological functions. Signaling proteins represent nodes, and signal transmission proceeds via allosteric binding, chemical and structural modifications, synthesis, sequestering, and degradation. The induction of the gene caudal type homeobox 2 (CDX2) in the mammalian preimplantation embryo is outlined as a demonstration of this concept. CDX2 is involved in the decision of cells to enter the trophoblast lineage. Two signal chains are coordinated into an information processing model with the help of logic gates. The model introduces a formal structure that incorporates experimental and morphological data. Above the cell level, information flow relates to tissue formation and functioning, and whole cells play the role of network nodes. This is described for the anatomical patterning of bone with implications for bone formation and homeostasis. The information usage in cells and tissues is set into a context of the nervous system and the interaction of human individuals in societies, both established scenes of information processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.