Abstract

ABSTRACT Nested automated ribosomal intergenic spacer analysis (ARISA) was used to examine the community structure of epilithic biofilms in freshwater streams experiencing different levels of human impact. This molecular fingerprinting technique generated reproducible profiles of bacterial community structure that varied significantly between stream sites. Nested ARISA was determined to be a cost‐effective, high‐throughput approach to assess bacterial community composition from very small sample volumes, requiring little sampling effort and without the need for taxonomic identification of individual organisms. In combination with multidimensional scaling, nested ARISA provides a rapid and sensitive method to carry out complex analyses of bacterial community structure. PRACTICAL APPLICATIONSNested automated ribosomal intergenic spacer analysis (ARISA) provides a high‐throughput molecular method with which to screen large numbers of environmental samples for differences in microbial community structure. This sensitive approach benefits assessments from small sample volumes or environments exhibiting reduced microbial biomass (both aquatic and terrestrial). Differences in bacterial community structure (obtained from ARISA profiles) could be used to characterize the impact of anthropogenic disturbance on freshwater systems, analogous to the current use of macroinvertebrate indicators of freshwater ecological health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call