Abstract

Abstract. The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and heating fire. Fuel-based emission factors (EFs; with units of pollutant mass emitted per kilogram of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced-draft zigzag brick kiln, EFPM2.5 ranged from 12 to 19 g kg−1 with major contributions from OC (7 %), sulfate expected to be in the form of sulfuric acid (31.9 %), and other chemicals not measured (e.g., particle-bound water). For the clamp kiln, EFPM2.5 ranged from 8 to 13 g kg−1, with major contributions from OC (63.2 %), sulfate (23.4 %), and ammonium (16 %). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4 ± 1.2 g kg−1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125 ± 23 g kg−1. Garbage burning emissions contained triphenylbenzene and relatively high concentrations of heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and three-stone cooking fires. The comparisons of different cooking stoves and cooking fires revealed the highest PM emissions from three-stone cooking fires (7.6–73 g kg−1), followed by traditional mud stoves (5.3–19.7 g kg−1), mud stoves with a chimney for exhaust (3.0–6.8 g kg−1), rocket stoves (1.5–7.2 g kg−1), induced-draft stoves (1.2–5.7 g kg−1), and the bhuse chulo stove (3.2 g kg−1), while biogas had no detectable PM emissions. Idling motorcycle emissions were evaluated before and after routine servicing at a local shop, which decreased EFPM2.5 from 8.8 ± 1.3 to 0.71 ± 0.45 g kg−1 when averaged across five motorcycles. Organic species analysis indicated that this reduction in PM2.5 was largely due to a decrease in emission of motor oil, probably from the crankcase. The EF and chemical emissions profiles developed in this study may be used for source apportionment and to update regional emission inventories.

Highlights

  • Insufficient knowledge of air pollution sources in South Asia hinders the development of pollution mitigation strategies to protect public health (Gurung and Bell, 2013) and model representation of air quality and climate on local to global scales (Adhikary et al, 2007; Bond et al, 2013)

  • We report EFPM2.5 for a number of different widespread and under-sampled combustion sources in Nepal, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, traditional and modern cooking stoves, crop residue burning, and open burning of biofuels

  • We provide the first EFPM for diesel groundwater pumps, which are prevalent in South Asia

Read more

Summary

Introduction

Insufficient knowledge of air pollution sources in South Asia hinders the development of pollution mitigation strategies to protect public health (Gurung and Bell, 2013) and model representation of air quality and climate on local to global scales (Adhikary et al, 2007; Bond et al, 2013). Prevalent but under-characterized combustion emission sources in South Asia include traffic, brick kilns, garbage burning, cooking stoves, and the open burning of biomass. To begin to address this gap, the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) was conducted to (i) characterize the emissions of gas and particle species produced by the many important combustion sources in Nepal as a model for South Asia, (ii) develop emission factors and detailed emissions profiles for these sources to support revisions to regional emissions inventories, and (iii) apply knowledge of source emissions to improve source apportionment of ambient air pollution. During April 2015, a moveable laboratory was deployed in Nepal to characterize in situ emissions from brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, motorcycles, traditional and modern cooking stoves, and agricultural residue burning. PM emission factors and chemical composition for these combustion sources are reported

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call