Abstract
The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.
Highlights
The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward
Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat
Bangiomorpha and Raffatazmia, both reasonably interpreted as red algal fossils, point to an origin of multicellular red algae well into the Mesoproterozoic, 1.0 to 1.6 billion y ago [1, 2]
Summary
The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. A time-calibrated tree, inferred from available fossil data, reconstructs important evolutionary events, such as transitions to benthic environments and the evolution of macroscopic growth in the late Tonian/ Cryogenian periods, followed by a marked Ordovician diversification of macroscopic forms. This ancient proliferation of green seaweeds likely modified shallow marine ecosystems, which set off an evolutionary arms race between ever larger seaweeds and grazers. The smaller, nonseaweed orders (e.g., Ignatiales, Scotinosphaerales, and Oltmannsiellopsidales), are morphologically less complex, and they grow as microscopic unicellular forms with uninucleate cells
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have