Abstract
This article is part of a Special Issue “Neuroendocrine-Immune Axis in Health and Disease.”Neonatal lipopolysaccharide (LPS) exposure alters neuroendocrine, immune and behavioural responses in adult rats. Recent findings indicate that neonatal LPS treatment may have a more pronounced effect on the mating behaviours of females compared to males. The current study further explored the impact of neonatal inflammation on reproductive development in the female rat. Wistar rats were administered LPS (0.05mg/kg, i.p.) or saline (equivolume) on postnatal days (PNDs) 3 and 5. The immediate effect of treatment was assessed on plasma corticosterone and tyrosine hydroxylase (TH) phosphorylation in the adrenal medulla. Weight gain and vaginal opening were recorded, and oestrous cyclicity was monitored post-puberty and in late adulthood. Blood and ovaries were collected throughout development to assess HPA and HPG hormones and to examine ovarian morphology. Reproductive success in the first (F1) generation and reproductive development in the second (F2) generation were also assessed. Neonatal LPS exposure resulted in increased TH phosphorylation in the neonatal adrenals. LPS treatment increased the corticosterone concentrations of females as juveniles, adolescents and adults, and reduced FSH in adolescence. Increased catch-up growth was evident in LPS-treated females, prompting earlier onset of puberty. Diminished follicular reserve was observed in neonatally LPS-treated females along with the advanced reproductive senescence. While fertility rates were not compromised, higher mortality and morbidity were observed in litters born to LPS-treated mothers. Female offspring of LPS-treated mothers displayed increased corticosterone on PND 14, increased catch-up growth and delayed emergence of the first oestrous cycle. No differences in any of the parameters assessed were observed in F2 males. These data suggest that neonatal immunological challenge has a profound impact on the female reproductive development, via the alteration of metabolic and neuroendocrine factors which regulate sexual maturation. Evidence of altered development in the female, but not male offspring of LPS-treated dams suggests increased susceptibility of females to the deleterious effects of neonatal immunological stress and its possible transferability to a subsequent generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.