Abstract

Estradiol (E2) prevents cardiac hypertrophy, and these protective actions are mediated by estrogen receptor (ER)α and ERβ. The G protein-coupled estrogen receptor (GPER) mediates many estrogenic effects, and its activation in the heart has been observed in ischemia and reperfusion injury or hypertension models; however, the underlying mechanisms need to be fully elucidated. Herein, we investigated whether the protective effect of E2 against cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) is mediated by GPER and the signaling pathways involved. Isolated neonatal female rat cardiomyocytes were treated with ET-1 (100 nmol/l) for 48 h in the presence or absence of E2 (10 nmol/l) or GPER agonist G-1 (10 nmol/l) and GPER antagonist G-15 (10 nmol/l). ET-1 increased the surface area of cardiomyocytes, and this was associated with increased expression of atrial and brain natriuretic peptides. Additionally, ET-1 increased the phosphorylation of extracellular signal-related protein kinases-1/2 (ERK1/2). Notably, E2 or G-1 abolished the hypertrophic actions of ET-1, and that was reversed by G-15. Likewise, E2 reversed the ET-1-mediated increase of ERK1/2 phosphorylation as well as the decrease of phosphorylated Akt and its upstream activator 3-phosphoinositide-dependent protein kinase-1 (PDK1). These effects were inhibited by G-15, indicating that they are GPER dependent. Confirming the participation of GPER, siRNA silencing of GPER inhibited the antihypertrophic effect of E2. In conclusion, E2 plays a key role in antagonizing ET-1-induced hypertrophy in cultured neonatal cardiomyocytes through GPER signaling by a mechanism involving activation of the PDK1 pathway, which would prevent the increase of ERK1/2 activity and consequently the development of hypertrophy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call